import pandas as pd
df = pd.DataFrame([{'Name': 'Chris', 'Item Purchased': 'Sponge', 'Cost': 22.50},
{'Name': 'Kevyn', 'Item Purchased': 'Kitty Litter', 'Cost': 2.50},
{'Name': 'Filip', 'Item Purchased': 'Spoon', 'Cost': 5.00}],
index=['Store 1', 'Store 1', 'Store 2'])
df
| Cost | Item Purchased | Name | |
|---|---|---|---|
| Store 1 | 22.5 | Sponge | Chris |
| Store 1 | 2.5 | Kitty Litter | Kevyn |
| Store 2 | 5.0 | Spoon | Filip |
df['Date'] = ['December 1', 'January 1', 'mid-May']
df
| Cost | Item Purchased | Name | Date | |
|---|---|---|---|---|
| Store 1 | 22.5 | Sponge | Chris | December 1 |
| Store 1 | 2.5 | Kitty Litter | Kevyn | January 1 |
| Store 2 | 5.0 | Spoon | Filip | mid-May |
df['Delivered'] = True
df
| Cost | Item Purchased | Name | Date | Delivered | |
|---|---|---|---|---|---|
| Store 1 | 22.5 | Sponge | Chris | December 1 | True |
| Store 1 | 2.5 | Kitty Litter | Kevyn | January 1 | True |
| Store 2 | 5.0 | Spoon | Filip | mid-May | True |
df['Feedback'] = ['Positive', None, 'Negative']
df
| Cost | Item Purchased | Name | Date | Delivered | Feedback | |
|---|---|---|---|---|---|---|
| Store 1 | 22.5 | Sponge | Chris | December 1 | True | Positive |
| Store 1 | 2.5 | Kitty Litter | Kevyn | January 1 | True | None |
| Store 2 | 5.0 | Spoon | Filip | mid-May | True | Negative |
adf = df.reset_index()
adf['Date'] = pd.Series({0: 'December 1', 2: 'mid-May'})
adf
staff_df = pd.DataFrame([{'Name': 'Kelly', 'Role': 'Director of HR'},
{'Name': 'Sally', 'Role': 'Course liasion'},
{'Name': 'James', 'Role': 'Grader'}])
staff_df = staff_df.set_index('Name')
student_df = pd.DataFrame([{'Name': 'James', 'School': 'Business'},
{'Name': 'Mike', 'School': 'Law'},
{'Name': 'Sally', 'School': 'Engineering'}])
student_df = student_df.set_index('Name')
print(staff_df)
print()
print(student_df)
Role
Name
Kelly Director of HR
Sally Course liasion
James Grader
School
Name
James Business
Mike Law
Sally Engineering
pd.merge?
pd.merge(staff_df, student_df, how='outer', left_index=True, right_index=True)
| Role | School | |
|---|---|---|
| Name | ||
| James | Grader | Business |
| Kelly | Director of HR | NaN |
| Mike | NaN | Law |
| Sally | Course liasion | Engineering |
pd.merge(staff_df, student_df, how='inner', left_index=True, right_index=True)
| Role | School | |
|---|---|---|
| Name | ||
| Sally | Course liasion | Engineering |
| James | Grader | Business |
pd.merge(staff_df, student_df, how='left', left_index=True, right_index=True)
| Role | School | |
|---|---|---|
| Name | ||
| Kelly | Director of HR | NaN |
| Sally | Course liasion | Engineering |
| James | Grader | Business |
pd.merge(staff_df, student_df, how='right', left_index=True, right_index=True)
| Role | School | |
|---|---|---|
| Name | ||
| James | Grader | Business |
| Mike | NaN | Law |
| Sally | Course liasion | Engineering |
staff_df = staff_df.reset_index()
student_df = student_df.reset_index()
pd.merge(staff_df, student_df, how='left', left_on='Name', right_on='Name')
staff_df = pd.DataFrame([{'Name': 'Kelly', 'Role': 'Director of HR', 'Location': 'State Street'},
{'Name': 'Sally', 'Role': 'Course liasion', 'Location': 'Washington Avenue'},
{'Name': 'James', 'Role': 'Grader', 'Location': 'Washington Avenue'}])
student_df = pd.DataFrame([{'Name': 'James', 'School': 'Business', 'Location': '1024 Billiard Avenue'},
{'Name': 'Mike', 'School': 'Law', 'Location': 'Fraternity House #22'},
{'Name': 'Sally', 'School': 'Engineering', 'Location': '512 Wilson Crescent'}])
pd.merge(staff_df, student_df, how='left', left_on='Name', right_on='Name')
staff_df = pd.DataFrame([{'First Name': 'Kelly', 'Last Name': 'Desjardins', 'Role': 'Director of HR'},
{'First Name': 'Sally', 'Last Name': 'Brooks', 'Role': 'Course liasion'},
{'First Name': 'James', 'Last Name': 'Wilde', 'Role': 'Grader'}])
student_df = pd.DataFrame([{'First Name': 'James', 'Last Name': 'Hammond', 'School': 'Business'},
{'First Name': 'Mike', 'Last Name': 'Smith', 'School': 'Law'},
{'First Name': 'Sally', 'Last Name': 'Brooks', 'School': 'Engineering'}])
staff_df
student_df
pd.merge(staff_df, student_df, how='inner', left_on=['First Name','Last Name'], right_on=['First Name','Last Name'])
import pandas as pd
df = pd.read_csv('~/Data_Science_with_Python/course1_downloads/census.csv')
df
| SUMLEV | REGION | DIVISION | STATE | COUNTY | STNAME | CTYNAME | CENSUS2010POP | ESTIMATESBASE2010 | POPESTIMATE2010 | ... | RDOMESTICMIG2011 | RDOMESTICMIG2012 | RDOMESTICMIG2013 | RDOMESTICMIG2014 | RDOMESTICMIG2015 | RNETMIG2011 | RNETMIG2012 | RNETMIG2013 | RNETMIG2014 | RNETMIG2015 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 40 | 3 | 6 | 1 | 0 | Alabama | Alabama | 4779736 | 4780127 | 4785161 | ... | 0.002295 | -0.193196 | 0.381066 | 0.582002 | -0.467369 | 1.030015 | 0.826644 | 1.383282 | 1.724718 | 0.712594 |
| 1 | 50 | 3 | 6 | 1 | 1 | Alabama | Autauga County | 54571 | 54571 | 54660 | ... | 7.242091 | -2.915927 | -3.012349 | 2.265971 | -2.530799 | 7.606016 | -2.626146 | -2.722002 | 2.592270 | -2.187333 |
| 2 | 50 | 3 | 6 | 1 | 3 | Alabama | Baldwin County | 182265 | 182265 | 183193 | ... | 14.832960 | 17.647293 | 21.845705 | 19.243287 | 17.197872 | 15.844176 | 18.559627 | 22.727626 | 20.317142 | 18.293499 |
| 3 | 50 | 3 | 6 | 1 | 5 | Alabama | Barbour County | 27457 | 27457 | 27341 | ... | -4.728132 | -2.500690 | -7.056824 | -3.904217 | -10.543299 | -4.874741 | -2.758113 | -7.167664 | -3.978583 | -10.543299 |
| 4 | 50 | 3 | 6 | 1 | 7 | Alabama | Bibb County | 22915 | 22919 | 22861 | ... | -5.527043 | -5.068871 | -6.201001 | -0.177537 | 0.177258 | -5.088389 | -4.363636 | -5.403729 | 0.754533 | 1.107861 |
| 5 | 50 | 3 | 6 | 1 | 9 | Alabama | Blount County | 57322 | 57322 | 57373 | ... | 1.807375 | -1.177622 | -1.748766 | -2.062535 | -1.369970 | 1.859511 | -0.848580 | -1.402476 | -1.577232 | -0.884411 |
| 6 | 50 | 3 | 6 | 1 | 11 | Alabama | Bullock County | 10914 | 10915 | 10887 | ... | -30.953709 | -5.180127 | -1.130263 | 14.354290 | -16.167247 | -29.001673 | -2.825524 | 1.507017 | 17.243790 | -13.193961 |
| 7 | 50 | 3 | 6 | 1 | 13 | Alabama | Butler County | 20947 | 20946 | 20944 | ... | -14.032727 | -11.684234 | -5.655413 | 1.085428 | -6.529805 | -13.936612 | -11.586865 | -5.557058 | 1.184103 | -6.430868 |
| 8 | 50 | 3 | 6 | 1 | 15 | Alabama | Calhoun County | 118572 | 118586 | 118437 | ... | -6.155670 | -4.611706 | -5.524649 | -4.463211 | -3.376322 | -5.791579 | -4.092677 | -5.062836 | -3.912834 | -2.806406 |
| 9 | 50 | 3 | 6 | 1 | 17 | Alabama | Chambers County | 34215 | 34170 | 34098 | ... | -2.731639 | 3.849092 | 2.872721 | -2.287222 | 1.349468 | -1.821092 | 4.701181 | 3.781439 | -1.290228 | 2.346901 |
| 10 | 50 | 3 | 6 | 1 | 19 | Alabama | Cherokee County | 25989 | 25986 | 25976 | ... | 6.339327 | 1.113180 | 5.488706 | -0.076806 | -3.239866 | 6.416167 | 1.420264 | 5.757384 | 0.230419 | -2.931307 |
| 11 | 50 | 3 | 6 | 1 | 21 | Alabama | Chilton County | 43643 | 43631 | 43665 | ... | -1.372935 | -2.653369 | 0.480044 | 0.456017 | -2.253483 | -0.823761 | -2.447504 | 0.868651 | 0.957636 | -1.752709 |
| 12 | 50 | 3 | 6 | 1 | 23 | Alabama | Choctaw County | 13859 | 13858 | 13841 | ... | -15.455274 | -0.737028 | -8.766391 | -1.274984 | -5.291205 | -15.528177 | -0.737028 | -8.766391 | -1.274984 | -5.291205 |
| 13 | 50 | 3 | 6 | 1 | 25 | Alabama | Clarke County | 25833 | 25840 | 25767 | ... | -6.194363 | -17.667705 | -0.318345 | -8.686428 | -5.613667 | -6.077488 | -17.509958 | -0.159172 | -8.486280 | -5.411736 |
| 14 | 50 | 3 | 6 | 1 | 27 | Alabama | Clay County | 13932 | 13932 | 13880 | ... | -10.744102 | -13.345130 | 4.902871 | 5.702648 | 3.912450 | -10.816697 | -13.345130 | 4.977157 | 5.776708 | 3.986270 |
| 15 | 50 | 3 | 6 | 1 | 29 | Alabama | Cleburne County | 14972 | 14972 | 14973 | ... | -3.673524 | -5.151880 | 7.345821 | 3.654485 | -3.123961 | -3.673524 | -5.151880 | 7.345821 | 3.654485 | -3.123961 |
| 16 | 50 | 3 | 6 | 1 | 31 | Alabama | Coffee County | 49948 | 49948 | 50177 | ... | 0.377640 | 7.675579 | -13.146535 | -3.602859 | 2.214774 | 2.166460 | 11.513368 | -10.438741 | -0.767822 | 5.350738 |
| 17 | 50 | 3 | 6 | 1 | 33 | Alabama | Colbert County | 54428 | 54428 | 54514 | ... | -0.073423 | 1.065051 | 1.762390 | 1.835688 | -0.110260 | 0.513964 | 1.469035 | 2.276420 | 2.533249 | 0.588052 |
| 18 | 50 | 3 | 6 | 1 | 35 | Alabama | Conecuh County | 13228 | 13228 | 13208 | ... | -4.861559 | -7.504690 | -6.107224 | -14.645416 | 2.684140 | -4.861559 | -7.504690 | -6.107224 | -14.645416 | 2.684140 |
| 19 | 50 | 3 | 6 | 1 | 37 | Alabama | Coosa County | 11539 | 11758 | 11758 | ... | -33.930581 | -10.291443 | -4.313831 | -22.958017 | -5.387581 | -34.017138 | -10.380162 | -4.403703 | -23.049483 | -5.387581 |
| 20 | 50 | 3 | 6 | 1 | 39 | Alabama | Covington County | 37765 | 37765 | 37796 | ... | 6.696899 | -4.612668 | 0.740271 | 3.697932 | -0.316945 | 6.881460 | -4.559952 | 0.793147 | 3.750759 | -0.264121 |
| 21 | 50 | 3 | 6 | 1 | 41 | Alabama | Crenshaw County | 13906 | 13906 | 13853 | ... | 1.729792 | 3.950156 | -1.864936 | 3.084648 | 3.439504 | 2.666763 | 5.099293 | -0.502098 | 4.734577 | 5.087600 |
| 22 | 50 | 3 | 6 | 1 | 43 | Alabama | Cullman County | 80406 | 80410 | 80473 | ... | -1.404233 | -1.019628 | 4.071247 | 5.087142 | 7.915406 | -1.031427 | -0.634159 | 4.542916 | 5.593387 | 8.417777 |
| 23 | 50 | 3 | 6 | 1 | 45 | Alabama | Dale County | 50251 | 50251 | 50358 | ... | -10.749798 | -5.277150 | -15.236079 | -11.979785 | -5.107706 | -9.575283 | -0.776637 | -12.640155 | -9.503292 | -1.998668 |
| 24 | 50 | 3 | 6 | 1 | 47 | Alabama | Dallas County | 43820 | 43820 | 43803 | ... | -15.635599 | -11.308243 | -16.745678 | -9.344789 | -14.687232 | -15.727573 | -11.378047 | -16.792849 | -9.368689 | -14.711389 |
| 25 | 50 | 3 | 6 | 1 | 49 | Alabama | DeKalb County | 71109 | 71115 | 71142 | ... | 0.294677 | -9.302391 | -1.748807 | 0.267830 | 0.028141 | 1.375159 | -8.656001 | -1.029539 | 1.198187 | 0.956790 |
| 26 | 50 | 3 | 6 | 1 | 51 | Alabama | Elmore County | 79303 | 79296 | 79465 | ... | 3.235576 | 0.822717 | 1.760531 | -1.507057 | 2.067820 | 3.674511 | 1.558176 | 2.306047 | -0.951175 | 2.757093 |
| 27 | 50 | 3 | 6 | 1 | 53 | Alabama | Escambia County | 38319 | 38319 | 38309 | ... | -3.449988 | -3.855889 | -4.822706 | -1.189831 | 1.190902 | -3.397716 | -3.803428 | -4.769999 | -1.136950 | 1.243830 |
| 28 | 50 | 3 | 6 | 1 | 55 | Alabama | Etowah County | 104430 | 104427 | 104442 | ... | -1.015919 | 2.062637 | -1.931884 | -1.726932 | -2.082234 | -0.632554 | 2.446383 | -1.518596 | -1.234901 | -1.588308 |
| 29 | 50 | 3 | 6 | 1 | 57 | Alabama | Fayette County | 17241 | 17241 | 17231 | ... | -5.015601 | -0.646640 | -3.725937 | 0.296745 | -2.797536 | -5.132243 | -0.705426 | -3.785079 | 0.237396 | -2.857058 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 3163 | 50 | 2 | 3 | 55 | 131 | Wisconsin | Washington County | 131887 | 131885 | 131967 | ... | -0.794876 | 0.785279 | -2.215465 | 1.601149 | -0.434498 | -0.431504 | 1.162817 | -1.763330 | 2.104796 | 0.059931 |
| 3164 | 50 | 2 | 3 | 55 | 133 | Wisconsin | Waukesha County | 389891 | 389938 | 390076 | ... | -0.765799 | 2.128860 | 0.038132 | 0.760109 | -0.719858 | 0.102448 | 3.180527 | 1.189727 | 2.077633 | 0.593567 |
| 3165 | 50 | 2 | 3 | 55 | 135 | Wisconsin | Waupaca County | 52410 | 52410 | 52422 | ... | 3.111756 | -2.241873 | 6.292687 | -0.441031 | -0.480617 | 3.359933 | -2.011937 | 6.561277 | -0.134227 | -0.173022 |
| 3166 | 50 | 2 | 3 | 55 | 137 | Wisconsin | Waushara County | 24496 | 24496 | 24506 | ... | 4.930022 | -2.404973 | -4.097017 | -4.906711 | -4.397793 | 5.174486 | -2.160399 | -3.810226 | -4.535615 | -4.024395 |
| 3167 | 50 | 2 | 3 | 55 | 139 | Wisconsin | Winnebago County | 166994 | 166994 | 167059 | ... | 0.316712 | 2.889873 | 0.833819 | -2.406192 | -4.557985 | 0.842573 | 3.502335 | 1.531624 | -1.545153 | -3.685304 |
| 3168 | 50 | 2 | 3 | 55 | 141 | Wisconsin | Wood County | 74749 | 74749 | 74807 | ... | -4.081523 | -5.019090 | -6.901200 | -5.596471 | -3.958322 | -3.733590 | -4.562809 | -6.442917 | -5.040889 | -3.414223 |
| 3169 | 40 | 4 | 8 | 56 | 0 | Wyoming | Wyoming | 563626 | 563767 | 564516 | ... | -0.381530 | 9.636214 | 4.487115 | -4.788275 | -3.221091 | 0.289680 | 10.694870 | 5.440390 | -3.727831 | -2.091573 |
| 3170 | 50 | 4 | 8 | 56 | 1 | Wyoming | Albany County | 36299 | 36299 | 36428 | ... | 3.708956 | 2.637812 | -3.544634 | -3.334877 | -9.911169 | 6.736119 | 6.433032 | 0.719587 | 1.429233 | -5.166460 |
| 3171 | 50 | 4 | 8 | 56 | 3 | Wyoming | Big Horn County | 11668 | 11668 | 11672 | ... | 4.868258 | 2.804930 | 16.815908 | -8.026420 | 5.095861 | 4.868258 | 3.144921 | 17.236306 | -7.608378 | 5.513554 |
| 3172 | 50 | 4 | 8 | 56 | 5 | Wyoming | Campbell County | 46133 | 46133 | 46244 | ... | -2.843479 | 15.601020 | -5.895711 | -8.550911 | 10.916963 | -2.649606 | 15.558684 | -5.916543 | -8.509402 | 10.978525 |
| 3173 | 50 | 4 | 8 | 56 | 7 | Wyoming | Carbon County | 15885 | 15885 | 15837 | ... | -7.581980 | -13.081441 | 3.178134 | -2.970641 | -23.300971 | -7.392431 | -12.636926 | 3.623073 | -2.338590 | -22.600668 |
| 3174 | 50 | 4 | 8 | 56 | 9 | Wyoming | Converse County | 13833 | 13833 | 13826 | ... | -12.847499 | 15.493820 | 19.035533 | -20.550587 | -0.070403 | -12.774915 | 16.502720 | 20.093063 | -19.358233 | 1.126443 |
| 3175 | 50 | 4 | 8 | 56 | 11 | Wyoming | Crook County | 7083 | 7083 | 7114 | ... | -1.544618 | -4.202564 | 1.397819 | 6.378258 | 18.629317 | -0.982939 | -3.642222 | 2.096729 | 7.071547 | 19.309219 |
| 3176 | 50 | 4 | 8 | 56 | 13 | Wyoming | Fremont County | 40123 | 40123 | 40222 | ... | 2.747083 | 7.782673 | -4.990688 | -12.331633 | -13.673610 | 3.093562 | 8.027411 | -4.747240 | -12.013555 | -13.352750 |
| 3177 | 50 | 4 | 8 | 56 | 15 | Wyoming | Goshen County | 13249 | 13247 | 13408 | ... | 14.293649 | 3.961413 | -8.079028 | -7.017803 | -11.899450 | 14.886132 | 4.841727 | -6.903896 | -5.761986 | -10.635133 |
| 3178 | 50 | 4 | 8 | 56 | 17 | Wyoming | Hot Springs County | 4812 | 4812 | 4813 | ... | 3.322604 | 6.208609 | 3.095336 | -6.017222 | -5.454164 | 5.191569 | 6.001656 | 2.888981 | -6.224712 | -5.663940 |
| 3179 | 50 | 4 | 8 | 56 | 19 | Wyoming | Johnson County | 8569 | 8569 | 8581 | ... | 4.995063 | -4.058912 | -0.812583 | -10.715742 | 0.933652 | 5.227392 | -4.058912 | -0.812583 | -10.715742 | 0.933652 |
| 3180 | 50 | 4 | 8 | 56 | 21 | Wyoming | Laramie County | 91738 | 91881 | 92271 | ... | -1.200428 | 15.547274 | 4.787847 | -1.226133 | 0.278940 | -0.973320 | 17.914554 | 6.003143 | -0.207819 | 1.673640 |
| 3181 | 50 | 4 | 8 | 56 | 23 | Wyoming | Lincoln County | 18106 | 18106 | 18091 | ... | -9.802564 | -11.566801 | 13.564556 | 6.125989 | 1.555544 | -9.691801 | -11.566801 | 13.619696 | 6.234414 | 1.662823 |
| 3182 | 50 | 4 | 8 | 56 | 25 | Wyoming | Natrona County | 75450 | 75450 | 75472 | ... | 7.189319 | 23.066162 | 24.322042 | -0.958472 | -0.061057 | 7.689674 | 23.749508 | 25.085233 | -0.110593 | 0.793743 |
| 3183 | 50 | 4 | 8 | 56 | 27 | Wyoming | Niobrara County | 2484 | 2484 | 2492 | ... | -0.401849 | 0.806452 | 29.066295 | -12.603387 | 7.492114 | -0.401849 | 0.806452 | 29.066295 | -12.603387 | 7.492114 |
| 3184 | 50 | 4 | 8 | 56 | 29 | Wyoming | Park County | 28205 | 28205 | 28259 | ... | 4.582951 | 8.057765 | 7.641997 | -9.252437 | -2.878980 | 6.486639 | 11.127389 | 10.877797 | -5.585731 | 0.856839 |
| 3185 | 50 | 4 | 8 | 56 | 31 | Wyoming | Platte County | 8667 | 8667 | 8678 | ... | 4.373094 | 5.392073 | 2.634593 | 6.055759 | 4.662270 | 4.373094 | 4.933173 | 2.176403 | 5.598720 | 4.207414 |
| 3186 | 50 | 4 | 8 | 56 | 33 | Wyoming | Sheridan County | 29116 | 29116 | 29146 | ... | 0.958559 | 8.425487 | 4.546373 | 3.678069 | -3.298406 | 2.122524 | 9.342778 | 5.523001 | 4.781489 | -2.198937 |
| 3187 | 50 | 4 | 8 | 56 | 35 | Wyoming | Sublette County | 10247 | 10247 | 10244 | ... | -23.741784 | 15.272374 | -40.870074 | -16.596273 | -22.870900 | -21.092907 | 16.828794 | -39.211861 | -14.409938 | -20.664059 |
| 3188 | 50 | 4 | 8 | 56 | 37 | Wyoming | Sweetwater County | 43806 | 43806 | 43593 | ... | 1.072643 | 16.243199 | -5.339774 | -14.252889 | -14.248864 | 1.255221 | 16.243199 | -5.295460 | -14.075283 | -14.070195 |
| 3189 | 50 | 4 | 8 | 56 | 39 | Wyoming | Teton County | 21294 | 21294 | 21297 | ... | -1.589565 | 0.972695 | 19.525929 | 14.143021 | -0.564849 | 0.654527 | 2.408578 | 21.160658 | 16.308671 | 1.520747 |
| 3190 | 50 | 4 | 8 | 56 | 41 | Wyoming | Uinta County | 21118 | 21118 | 21102 | ... | -17.755986 | -4.916350 | -6.902954 | -14.215862 | -12.127022 | -18.136812 | -5.536861 | -7.521840 | -14.740608 | -12.606351 |
| 3191 | 50 | 4 | 8 | 56 | 43 | Wyoming | Washakie County | 8533 | 8533 | 8545 | ... | -11.637475 | -0.827815 | -2.013502 | -17.781491 | 1.682288 | -11.990126 | -1.182592 | -2.250385 | -18.020168 | 1.441961 |
| 3192 | 50 | 4 | 8 | 56 | 45 | Wyoming | Weston County | 7208 | 7208 | 7181 | ... | -11.752361 | -8.040059 | 12.372583 | 1.533635 | 6.935294 | -12.032179 | -8.040059 | 12.372583 | 1.533635 | 6.935294 |
3193 rows × 100 columns
(df.where(df['SUMLEV']==50)
.dropna()
.set_index(['STNAME','CTYNAME'])
.rename(columns={'ESTIMATESBASE2010': 'Estimates Base 2010'}))
| SUMLEV | REGION | DIVISION | STATE | COUNTY | CENSUS2010POP | Estimates Base 2010 | POPESTIMATE2010 | POPESTIMATE2011 | POPESTIMATE2012 | ... | RDOMESTICMIG2011 | RDOMESTICMIG2012 | RDOMESTICMIG2013 | RDOMESTICMIG2014 | RDOMESTICMIG2015 | RNETMIG2011 | RNETMIG2012 | RNETMIG2013 | RNETMIG2014 | RNETMIG2015 | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| STNAME | CTYNAME | |||||||||||||||||||||
| Alabama | Autauga County | 50.0 | 3.0 | 6.0 | 1.0 | 1.0 | 54571.0 | 54571.0 | 54660.0 | 55253.0 | 55175.0 | ... | 7.242091 | -2.915927 | -3.012349 | 2.265971 | -2.530799 | 7.606016 | -2.626146 | -2.722002 | 2.592270 | -2.187333 |
| Baldwin County | 50.0 | 3.0 | 6.0 | 1.0 | 3.0 | 182265.0 | 182265.0 | 183193.0 | 186659.0 | 190396.0 | ... | 14.832960 | 17.647293 | 21.845705 | 19.243287 | 17.197872 | 15.844176 | 18.559627 | 22.727626 | 20.317142 | 18.293499 | |
| Barbour County | 50.0 | 3.0 | 6.0 | 1.0 | 5.0 | 27457.0 | 27457.0 | 27341.0 | 27226.0 | 27159.0 | ... | -4.728132 | -2.500690 | -7.056824 | -3.904217 | -10.543299 | -4.874741 | -2.758113 | -7.167664 | -3.978583 | -10.543299 | |
| Bibb County | 50.0 | 3.0 | 6.0 | 1.0 | 7.0 | 22915.0 | 22919.0 | 22861.0 | 22733.0 | 22642.0 | ... | -5.527043 | -5.068871 | -6.201001 | -0.177537 | 0.177258 | -5.088389 | -4.363636 | -5.403729 | 0.754533 | 1.107861 | |
| Blount County | 50.0 | 3.0 | 6.0 | 1.0 | 9.0 | 57322.0 | 57322.0 | 57373.0 | 57711.0 | 57776.0 | ... | 1.807375 | -1.177622 | -1.748766 | -2.062535 | -1.369970 | 1.859511 | -0.848580 | -1.402476 | -1.577232 | -0.884411 | |
| Bullock County | 50.0 | 3.0 | 6.0 | 1.0 | 11.0 | 10914.0 | 10915.0 | 10887.0 | 10629.0 | 10606.0 | ... | -30.953709 | -5.180127 | -1.130263 | 14.354290 | -16.167247 | -29.001673 | -2.825524 | 1.507017 | 17.243790 | -13.193961 | |
| Butler County | 50.0 | 3.0 | 6.0 | 1.0 | 13.0 | 20947.0 | 20946.0 | 20944.0 | 20673.0 | 20408.0 | ... | -14.032727 | -11.684234 | -5.655413 | 1.085428 | -6.529805 | -13.936612 | -11.586865 | -5.557058 | 1.184103 | -6.430868 | |
| Calhoun County | 50.0 | 3.0 | 6.0 | 1.0 | 15.0 | 118572.0 | 118586.0 | 118437.0 | 117768.0 | 117286.0 | ... | -6.155670 | -4.611706 | -5.524649 | -4.463211 | -3.376322 | -5.791579 | -4.092677 | -5.062836 | -3.912834 | -2.806406 | |
| Chambers County | 50.0 | 3.0 | 6.0 | 1.0 | 17.0 | 34215.0 | 34170.0 | 34098.0 | 33993.0 | 34075.0 | ... | -2.731639 | 3.849092 | 2.872721 | -2.287222 | 1.349468 | -1.821092 | 4.701181 | 3.781439 | -1.290228 | 2.346901 | |
| Cherokee County | 50.0 | 3.0 | 6.0 | 1.0 | 19.0 | 25989.0 | 25986.0 | 25976.0 | 26080.0 | 26023.0 | ... | 6.339327 | 1.113180 | 5.488706 | -0.076806 | -3.239866 | 6.416167 | 1.420264 | 5.757384 | 0.230419 | -2.931307 | |
| Chilton County | 50.0 | 3.0 | 6.0 | 1.0 | 21.0 | 43643.0 | 43631.0 | 43665.0 | 43739.0 | 43697.0 | ... | -1.372935 | -2.653369 | 0.480044 | 0.456017 | -2.253483 | -0.823761 | -2.447504 | 0.868651 | 0.957636 | -1.752709 | |
| Choctaw County | 50.0 | 3.0 | 6.0 | 1.0 | 23.0 | 13859.0 | 13858.0 | 13841.0 | 13593.0 | 13543.0 | ... | -15.455274 | -0.737028 | -8.766391 | -1.274984 | -5.291205 | -15.528177 | -0.737028 | -8.766391 | -1.274984 | -5.291205 | |
| Clarke County | 50.0 | 3.0 | 6.0 | 1.0 | 25.0 | 25833.0 | 25840.0 | 25767.0 | 25570.0 | 25144.0 | ... | -6.194363 | -17.667705 | -0.318345 | -8.686428 | -5.613667 | -6.077488 | -17.509958 | -0.159172 | -8.486280 | -5.411736 | |
| Clay County | 50.0 | 3.0 | 6.0 | 1.0 | 27.0 | 13932.0 | 13932.0 | 13880.0 | 13670.0 | 13456.0 | ... | -10.744102 | -13.345130 | 4.902871 | 5.702648 | 3.912450 | -10.816697 | -13.345130 | 4.977157 | 5.776708 | 3.986270 | |
| Cleburne County | 50.0 | 3.0 | 6.0 | 1.0 | 29.0 | 14972.0 | 14972.0 | 14973.0 | 14971.0 | 14921.0 | ... | -3.673524 | -5.151880 | 7.345821 | 3.654485 | -3.123961 | -3.673524 | -5.151880 | 7.345821 | 3.654485 | -3.123961 | |
| Coffee County | 50.0 | 3.0 | 6.0 | 1.0 | 31.0 | 49948.0 | 49948.0 | 50177.0 | 50448.0 | 51173.0 | ... | 0.377640 | 7.675579 | -13.146535 | -3.602859 | 2.214774 | 2.166460 | 11.513368 | -10.438741 | -0.767822 | 5.350738 | |
| Colbert County | 50.0 | 3.0 | 6.0 | 1.0 | 33.0 | 54428.0 | 54428.0 | 54514.0 | 54443.0 | 54472.0 | ... | -0.073423 | 1.065051 | 1.762390 | 1.835688 | -0.110260 | 0.513964 | 1.469035 | 2.276420 | 2.533249 | 0.588052 | |
| Conecuh County | 50.0 | 3.0 | 6.0 | 1.0 | 35.0 | 13228.0 | 13228.0 | 13208.0 | 13121.0 | 12996.0 | ... | -4.861559 | -7.504690 | -6.107224 | -14.645416 | 2.684140 | -4.861559 | -7.504690 | -6.107224 | -14.645416 | 2.684140 | |
| Coosa County | 50.0 | 3.0 | 6.0 | 1.0 | 37.0 | 11539.0 | 11758.0 | 11758.0 | 11348.0 | 11195.0 | ... | -33.930581 | -10.291443 | -4.313831 | -22.958017 | -5.387581 | -34.017138 | -10.380162 | -4.403703 | -23.049483 | -5.387581 | |
| Covington County | 50.0 | 3.0 | 6.0 | 1.0 | 39.0 | 37765.0 | 37765.0 | 37796.0 | 38060.0 | 37818.0 | ... | 6.696899 | -4.612668 | 0.740271 | 3.697932 | -0.316945 | 6.881460 | -4.559952 | 0.793147 | 3.750759 | -0.264121 | |
| Crenshaw County | 50.0 | 3.0 | 6.0 | 1.0 | 41.0 | 13906.0 | 13906.0 | 13853.0 | 13896.0 | 13951.0 | ... | 1.729792 | 3.950156 | -1.864936 | 3.084648 | 3.439504 | 2.666763 | 5.099293 | -0.502098 | 4.734577 | 5.087600 | |
| Cullman County | 50.0 | 3.0 | 6.0 | 1.0 | 43.0 | 80406.0 | 80410.0 | 80473.0 | 80469.0 | 80374.0 | ... | -1.404233 | -1.019628 | 4.071247 | 5.087142 | 7.915406 | -1.031427 | -0.634159 | 4.542916 | 5.593387 | 8.417777 | |
| Dale County | 50.0 | 3.0 | 6.0 | 1.0 | 45.0 | 50251.0 | 50251.0 | 50358.0 | 50109.0 | 50324.0 | ... | -10.749798 | -5.277150 | -15.236079 | -11.979785 | -5.107706 | -9.575283 | -0.776637 | -12.640155 | -9.503292 | -1.998668 | |
| Dallas County | 50.0 | 3.0 | 6.0 | 1.0 | 47.0 | 43820.0 | 43820.0 | 43803.0 | 43178.0 | 42777.0 | ... | -15.635599 | -11.308243 | -16.745678 | -9.344789 | -14.687232 | -15.727573 | -11.378047 | -16.792849 | -9.368689 | -14.711389 | |
| DeKalb County | 50.0 | 3.0 | 6.0 | 1.0 | 49.0 | 71109.0 | 71115.0 | 71142.0 | 71387.0 | 70942.0 | ... | 0.294677 | -9.302391 | -1.748807 | 0.267830 | 0.028141 | 1.375159 | -8.656001 | -1.029539 | 1.198187 | 0.956790 | |
| Elmore County | 50.0 | 3.0 | 6.0 | 1.0 | 51.0 | 79303.0 | 79296.0 | 79465.0 | 80012.0 | 80432.0 | ... | 3.235576 | 0.822717 | 1.760531 | -1.507057 | 2.067820 | 3.674511 | 1.558176 | 2.306047 | -0.951175 | 2.757093 | |
| Escambia County | 50.0 | 3.0 | 6.0 | 1.0 | 53.0 | 38319.0 | 38319.0 | 38309.0 | 38213.0 | 38034.0 | ... | -3.449988 | -3.855889 | -4.822706 | -1.189831 | 1.190902 | -3.397716 | -3.803428 | -4.769999 | -1.136950 | 1.243830 | |
| Etowah County | 50.0 | 3.0 | 6.0 | 1.0 | 55.0 | 104430.0 | 104427.0 | 104442.0 | 104236.0 | 104235.0 | ... | -1.015919 | 2.062637 | -1.931884 | -1.726932 | -2.082234 | -0.632554 | 2.446383 | -1.518596 | -1.234901 | -1.588308 | |
| Fayette County | 50.0 | 3.0 | 6.0 | 1.0 | 57.0 | 17241.0 | 17241.0 | 17231.0 | 17062.0 | 16960.0 | ... | -5.015601 | -0.646640 | -3.725937 | 0.296745 | -2.797536 | -5.132243 | -0.705426 | -3.785079 | 0.237396 | -2.857058 | |
| Franklin County | 50.0 | 3.0 | 6.0 | 1.0 | 59.0 | 31704.0 | 31709.0 | 31734.0 | 31729.0 | 31648.0 | ... | -1.638750 | -5.459394 | -8.043702 | -1.267849 | -2.401719 | 0.063029 | -3.471291 | -5.700261 | 1.553115 | 0.442422 | |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| Wisconsin | Washburn County | 50.0 | 2.0 | 3.0 | 55.0 | 129.0 | 15911.0 | 15911.0 | 15930.0 | 15784.0 | 15831.0 | ... | -6.873936 | 7.338289 | -6.732724 | 3.510452 | -5.123279 | -6.747809 | 7.464811 | -6.605691 | 3.638104 | -4.995197 |
| Washington County | 50.0 | 2.0 | 3.0 | 55.0 | 131.0 | 131887.0 | 131885.0 | 131967.0 | 132225.0 | 132649.0 | ... | -0.794876 | 0.785279 | -2.215465 | 1.601149 | -0.434498 | -0.431504 | 1.162817 | -1.763330 | 2.104796 | 0.059931 | |
| Waukesha County | 50.0 | 2.0 | 3.0 | 55.0 | 133.0 | 389891.0 | 389938.0 | 390076.0 | 390808.0 | 392710.0 | ... | -0.765799 | 2.128860 | 0.038132 | 0.760109 | -0.719858 | 0.102448 | 3.180527 | 1.189727 | 2.077633 | 0.593567 | |
| Waupaca County | 50.0 | 2.0 | 3.0 | 55.0 | 135.0 | 52410.0 | 52410.0 | 52422.0 | 52342.0 | 52035.0 | ... | 3.111756 | -2.241873 | 6.292687 | -0.441031 | -0.480617 | 3.359933 | -2.011937 | 6.561277 | -0.134227 | -0.173022 | |
| Waushara County | 50.0 | 2.0 | 3.0 | 55.0 | 137.0 | 24496.0 | 24496.0 | 24506.0 | 24581.0 | 24484.0 | ... | 4.930022 | -2.404973 | -4.097017 | -4.906711 | -4.397793 | 5.174486 | -2.160399 | -3.810226 | -4.535615 | -4.024395 | |
| Winnebago County | 50.0 | 2.0 | 3.0 | 55.0 | 139.0 | 166994.0 | 166994.0 | 167059.0 | 167630.0 | 168717.0 | ... | 0.316712 | 2.889873 | 0.833819 | -2.406192 | -4.557985 | 0.842573 | 3.502335 | 1.531624 | -1.545153 | -3.685304 | |
| Wood County | 50.0 | 2.0 | 3.0 | 55.0 | 141.0 | 74749.0 | 74749.0 | 74807.0 | 74647.0 | 74384.0 | ... | -4.081523 | -5.019090 | -6.901200 | -5.596471 | -3.958322 | -3.733590 | -4.562809 | -6.442917 | -5.040889 | -3.414223 | |
| Wyoming | Albany County | 50.0 | 4.0 | 8.0 | 56.0 | 1.0 | 36299.0 | 36299.0 | 36428.0 | 36908.0 | 37396.0 | ... | 3.708956 | 2.637812 | -3.544634 | -3.334877 | -9.911169 | 6.736119 | 6.433032 | 0.719587 | 1.429233 | -5.166460 |
| Big Horn County | 50.0 | 4.0 | 8.0 | 56.0 | 3.0 | 11668.0 | 11668.0 | 11672.0 | 11745.0 | 11785.0 | ... | 4.868258 | 2.804930 | 16.815908 | -8.026420 | 5.095861 | 4.868258 | 3.144921 | 17.236306 | -7.608378 | 5.513554 | |
| Campbell County | 50.0 | 4.0 | 8.0 | 56.0 | 5.0 | 46133.0 | 46133.0 | 46244.0 | 46600.0 | 47881.0 | ... | -2.843479 | 15.601020 | -5.895711 | -8.550911 | 10.916963 | -2.649606 | 15.558684 | -5.916543 | -8.509402 | 10.978525 | |
| Carbon County | 50.0 | 4.0 | 8.0 | 56.0 | 7.0 | 15885.0 | 15885.0 | 15837.0 | 15817.0 | 15678.0 | ... | -7.581980 | -13.081441 | 3.178134 | -2.970641 | -23.300971 | -7.392431 | -12.636926 | 3.623073 | -2.338590 | -22.600668 | |
| Converse County | 50.0 | 4.0 | 8.0 | 56.0 | 9.0 | 13833.0 | 13833.0 | 13826.0 | 13728.0 | 14025.0 | ... | -12.847499 | 15.493820 | 19.035533 | -20.550587 | -0.070403 | -12.774915 | 16.502720 | 20.093063 | -19.358233 | 1.126443 | |
| Crook County | 50.0 | 4.0 | 8.0 | 56.0 | 11.0 | 7083.0 | 7083.0 | 7114.0 | 7129.0 | 7148.0 | ... | -1.544618 | -4.202564 | 1.397819 | 6.378258 | 18.629317 | -0.982939 | -3.642222 | 2.096729 | 7.071547 | 19.309219 | |
| Fremont County | 50.0 | 4.0 | 8.0 | 56.0 | 13.0 | 40123.0 | 40123.0 | 40222.0 | 40591.0 | 41129.0 | ... | 2.747083 | 7.782673 | -4.990688 | -12.331633 | -13.673610 | 3.093562 | 8.027411 | -4.747240 | -12.013555 | -13.352750 | |
| Goshen County | 50.0 | 4.0 | 8.0 | 56.0 | 15.0 | 13249.0 | 13247.0 | 13408.0 | 13597.0 | 13666.0 | ... | 14.293649 | 3.961413 | -8.079028 | -7.017803 | -11.899450 | 14.886132 | 4.841727 | -6.903896 | -5.761986 | -10.635133 | |
| Hot Springs County | 50.0 | 4.0 | 8.0 | 56.0 | 17.0 | 4812.0 | 4812.0 | 4813.0 | 4818.0 | 4846.0 | ... | 3.322604 | 6.208609 | 3.095336 | -6.017222 | -5.454164 | 5.191569 | 6.001656 | 2.888981 | -6.224712 | -5.663940 | |
| Johnson County | 50.0 | 4.0 | 8.0 | 56.0 | 19.0 | 8569.0 | 8569.0 | 8581.0 | 8636.0 | 8610.0 | ... | 4.995063 | -4.058912 | -0.812583 | -10.715742 | 0.933652 | 5.227392 | -4.058912 | -0.812583 | -10.715742 | 0.933652 | |
| Laramie County | 50.0 | 4.0 | 8.0 | 56.0 | 21.0 | 91738.0 | 91881.0 | 92271.0 | 92663.0 | 94894.0 | ... | -1.200428 | 15.547274 | 4.787847 | -1.226133 | 0.278940 | -0.973320 | 17.914554 | 6.003143 | -0.207819 | 1.673640 | |
| Lincoln County | 50.0 | 4.0 | 8.0 | 56.0 | 23.0 | 18106.0 | 18106.0 | 18091.0 | 18022.0 | 17943.0 | ... | -9.802564 | -11.566801 | 13.564556 | 6.125989 | 1.555544 | -9.691801 | -11.566801 | 13.619696 | 6.234414 | 1.662823 | |
| Natrona County | 50.0 | 4.0 | 8.0 | 56.0 | 25.0 | 75450.0 | 75450.0 | 75472.0 | 76420.0 | 78699.0 | ... | 7.189319 | 23.066162 | 24.322042 | -0.958472 | -0.061057 | 7.689674 | 23.749508 | 25.085233 | -0.110593 | 0.793743 | |
| Niobrara County | 50.0 | 4.0 | 8.0 | 56.0 | 27.0 | 2484.0 | 2484.0 | 2492.0 | 2485.0 | 2475.0 | ... | -0.401849 | 0.806452 | 29.066295 | -12.603387 | 7.492114 | -0.401849 | 0.806452 | 29.066295 | -12.603387 | 7.492114 | |
| Park County | 50.0 | 4.0 | 8.0 | 56.0 | 29.0 | 28205.0 | 28205.0 | 28259.0 | 28473.0 | 28863.0 | ... | 4.582951 | 8.057765 | 7.641997 | -9.252437 | -2.878980 | 6.486639 | 11.127389 | 10.877797 | -5.585731 | 0.856839 | |
| Platte County | 50.0 | 4.0 | 8.0 | 56.0 | 31.0 | 8667.0 | 8667.0 | 8678.0 | 8701.0 | 8732.0 | ... | 4.373094 | 5.392073 | 2.634593 | 6.055759 | 4.662270 | 4.373094 | 4.933173 | 2.176403 | 5.598720 | 4.207414 | |
| Sheridan County | 50.0 | 4.0 | 8.0 | 56.0 | 33.0 | 29116.0 | 29116.0 | 29146.0 | 29275.0 | 29594.0 | ... | 0.958559 | 8.425487 | 4.546373 | 3.678069 | -3.298406 | 2.122524 | 9.342778 | 5.523001 | 4.781489 | -2.198937 | |
| Sublette County | 50.0 | 4.0 | 8.0 | 56.0 | 35.0 | 10247.0 | 10247.0 | 10244.0 | 10142.0 | 10418.0 | ... | -23.741784 | 15.272374 | -40.870074 | -16.596273 | -22.870900 | -21.092907 | 16.828794 | -39.211861 | -14.409938 | -20.664059 | |
| Sweetwater County | 50.0 | 4.0 | 8.0 | 56.0 | 37.0 | 43806.0 | 43806.0 | 43593.0 | 44041.0 | 45104.0 | ... | 1.072643 | 16.243199 | -5.339774 | -14.252889 | -14.248864 | 1.255221 | 16.243199 | -5.295460 | -14.075283 | -14.070195 | |
| Teton County | 50.0 | 4.0 | 8.0 | 56.0 | 39.0 | 21294.0 | 21294.0 | 21297.0 | 21482.0 | 21697.0 | ... | -1.589565 | 0.972695 | 19.525929 | 14.143021 | -0.564849 | 0.654527 | 2.408578 | 21.160658 | 16.308671 | 1.520747 | |
| Uinta County | 50.0 | 4.0 | 8.0 | 56.0 | 41.0 | 21118.0 | 21118.0 | 21102.0 | 20912.0 | 20989.0 | ... | -17.755986 | -4.916350 | -6.902954 | -14.215862 | -12.127022 | -18.136812 | -5.536861 | -7.521840 | -14.740608 | -12.606351 | |
| Washakie County | 50.0 | 4.0 | 8.0 | 56.0 | 43.0 | 8533.0 | 8533.0 | 8545.0 | 8469.0 | 8443.0 | ... | -11.637475 | -0.827815 | -2.013502 | -17.781491 | 1.682288 | -11.990126 | -1.182592 | -2.250385 | -18.020168 | 1.441961 | |
| Weston County | 50.0 | 4.0 | 8.0 | 56.0 | 45.0 | 7208.0 | 7208.0 | 7181.0 | 7114.0 | 7065.0 | ... | -11.752361 | -8.040059 | 12.372583 | 1.533635 | 6.935294 | -12.032179 | -8.040059 | 12.372583 | 1.533635 | 6.935294 |
3142 rows × 98 columns
df = df[df['SUMLEV']==50]
df.set_index(['STNAME','CTYNAME'], inplace=True)
df.rename(columns={'ESTIMATESBASE2010': 'Estimates Base 2010'})
| SUMLEV | REGION | DIVISION | STATE | COUNTY | CENSUS2010POP | Estimates Base 2010 | POPESTIMATE2010 | POPESTIMATE2011 | POPESTIMATE2012 | ... | RDOMESTICMIG2011 | RDOMESTICMIG2012 | RDOMESTICMIG2013 | RDOMESTICMIG2014 | RDOMESTICMIG2015 | RNETMIG2011 | RNETMIG2012 | RNETMIG2013 | RNETMIG2014 | RNETMIG2015 | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| STNAME | CTYNAME | |||||||||||||||||||||
| Alabama | Autauga County | 50 | 3 | 6 | 1 | 1 | 54571 | 54571 | 54660 | 55253 | 55175 | ... | 7.242091 | -2.915927 | -3.012349 | 2.265971 | -2.530799 | 7.606016 | -2.626146 | -2.722002 | 2.592270 | -2.187333 |
| Baldwin County | 50 | 3 | 6 | 1 | 3 | 182265 | 182265 | 183193 | 186659 | 190396 | ... | 14.832960 | 17.647293 | 21.845705 | 19.243287 | 17.197872 | 15.844176 | 18.559627 | 22.727626 | 20.317142 | 18.293499 | |
| Barbour County | 50 | 3 | 6 | 1 | 5 | 27457 | 27457 | 27341 | 27226 | 27159 | ... | -4.728132 | -2.500690 | -7.056824 | -3.904217 | -10.543299 | -4.874741 | -2.758113 | -7.167664 | -3.978583 | -10.543299 | |
| Bibb County | 50 | 3 | 6 | 1 | 7 | 22915 | 22919 | 22861 | 22733 | 22642 | ... | -5.527043 | -5.068871 | -6.201001 | -0.177537 | 0.177258 | -5.088389 | -4.363636 | -5.403729 | 0.754533 | 1.107861 | |
| Blount County | 50 | 3 | 6 | 1 | 9 | 57322 | 57322 | 57373 | 57711 | 57776 | ... | 1.807375 | -1.177622 | -1.748766 | -2.062535 | -1.369970 | 1.859511 | -0.848580 | -1.402476 | -1.577232 | -0.884411 | |
| Bullock County | 50 | 3 | 6 | 1 | 11 | 10914 | 10915 | 10887 | 10629 | 10606 | ... | -30.953709 | -5.180127 | -1.130263 | 14.354290 | -16.167247 | -29.001673 | -2.825524 | 1.507017 | 17.243790 | -13.193961 | |
| Butler County | 50 | 3 | 6 | 1 | 13 | 20947 | 20946 | 20944 | 20673 | 20408 | ... | -14.032727 | -11.684234 | -5.655413 | 1.085428 | -6.529805 | -13.936612 | -11.586865 | -5.557058 | 1.184103 | -6.430868 | |
| Calhoun County | 50 | 3 | 6 | 1 | 15 | 118572 | 118586 | 118437 | 117768 | 117286 | ... | -6.155670 | -4.611706 | -5.524649 | -4.463211 | -3.376322 | -5.791579 | -4.092677 | -5.062836 | -3.912834 | -2.806406 | |
| Chambers County | 50 | 3 | 6 | 1 | 17 | 34215 | 34170 | 34098 | 33993 | 34075 | ... | -2.731639 | 3.849092 | 2.872721 | -2.287222 | 1.349468 | -1.821092 | 4.701181 | 3.781439 | -1.290228 | 2.346901 | |
| Cherokee County | 50 | 3 | 6 | 1 | 19 | 25989 | 25986 | 25976 | 26080 | 26023 | ... | 6.339327 | 1.113180 | 5.488706 | -0.076806 | -3.239866 | 6.416167 | 1.420264 | 5.757384 | 0.230419 | -2.931307 | |
| Chilton County | 50 | 3 | 6 | 1 | 21 | 43643 | 43631 | 43665 | 43739 | 43697 | ... | -1.372935 | -2.653369 | 0.480044 | 0.456017 | -2.253483 | -0.823761 | -2.447504 | 0.868651 | 0.957636 | -1.752709 | |
| Choctaw County | 50 | 3 | 6 | 1 | 23 | 13859 | 13858 | 13841 | 13593 | 13543 | ... | -15.455274 | -0.737028 | -8.766391 | -1.274984 | -5.291205 | -15.528177 | -0.737028 | -8.766391 | -1.274984 | -5.291205 | |
| Clarke County | 50 | 3 | 6 | 1 | 25 | 25833 | 25840 | 25767 | 25570 | 25144 | ... | -6.194363 | -17.667705 | -0.318345 | -8.686428 | -5.613667 | -6.077488 | -17.509958 | -0.159172 | -8.486280 | -5.411736 | |
| Clay County | 50 | 3 | 6 | 1 | 27 | 13932 | 13932 | 13880 | 13670 | 13456 | ... | -10.744102 | -13.345130 | 4.902871 | 5.702648 | 3.912450 | -10.816697 | -13.345130 | 4.977157 | 5.776708 | 3.986270 | |
| Cleburne County | 50 | 3 | 6 | 1 | 29 | 14972 | 14972 | 14973 | 14971 | 14921 | ... | -3.673524 | -5.151880 | 7.345821 | 3.654485 | -3.123961 | -3.673524 | -5.151880 | 7.345821 | 3.654485 | -3.123961 | |
| Coffee County | 50 | 3 | 6 | 1 | 31 | 49948 | 49948 | 50177 | 50448 | 51173 | ... | 0.377640 | 7.675579 | -13.146535 | -3.602859 | 2.214774 | 2.166460 | 11.513368 | -10.438741 | -0.767822 | 5.350738 | |
| Colbert County | 50 | 3 | 6 | 1 | 33 | 54428 | 54428 | 54514 | 54443 | 54472 | ... | -0.073423 | 1.065051 | 1.762390 | 1.835688 | -0.110260 | 0.513964 | 1.469035 | 2.276420 | 2.533249 | 0.588052 | |
| Conecuh County | 50 | 3 | 6 | 1 | 35 | 13228 | 13228 | 13208 | 13121 | 12996 | ... | -4.861559 | -7.504690 | -6.107224 | -14.645416 | 2.684140 | -4.861559 | -7.504690 | -6.107224 | -14.645416 | 2.684140 | |
| Coosa County | 50 | 3 | 6 | 1 | 37 | 11539 | 11758 | 11758 | 11348 | 11195 | ... | -33.930581 | -10.291443 | -4.313831 | -22.958017 | -5.387581 | -34.017138 | -10.380162 | -4.403703 | -23.049483 | -5.387581 | |
| Covington County | 50 | 3 | 6 | 1 | 39 | 37765 | 37765 | 37796 | 38060 | 37818 | ... | 6.696899 | -4.612668 | 0.740271 | 3.697932 | -0.316945 | 6.881460 | -4.559952 | 0.793147 | 3.750759 | -0.264121 | |
| Crenshaw County | 50 | 3 | 6 | 1 | 41 | 13906 | 13906 | 13853 | 13896 | 13951 | ... | 1.729792 | 3.950156 | -1.864936 | 3.084648 | 3.439504 | 2.666763 | 5.099293 | -0.502098 | 4.734577 | 5.087600 | |
| Cullman County | 50 | 3 | 6 | 1 | 43 | 80406 | 80410 | 80473 | 80469 | 80374 | ... | -1.404233 | -1.019628 | 4.071247 | 5.087142 | 7.915406 | -1.031427 | -0.634159 | 4.542916 | 5.593387 | 8.417777 | |
| Dale County | 50 | 3 | 6 | 1 | 45 | 50251 | 50251 | 50358 | 50109 | 50324 | ... | -10.749798 | -5.277150 | -15.236079 | -11.979785 | -5.107706 | -9.575283 | -0.776637 | -12.640155 | -9.503292 | -1.998668 | |
| Dallas County | 50 | 3 | 6 | 1 | 47 | 43820 | 43820 | 43803 | 43178 | 42777 | ... | -15.635599 | -11.308243 | -16.745678 | -9.344789 | -14.687232 | -15.727573 | -11.378047 | -16.792849 | -9.368689 | -14.711389 | |
| DeKalb County | 50 | 3 | 6 | 1 | 49 | 71109 | 71115 | 71142 | 71387 | 70942 | ... | 0.294677 | -9.302391 | -1.748807 | 0.267830 | 0.028141 | 1.375159 | -8.656001 | -1.029539 | 1.198187 | 0.956790 | |
| Elmore County | 50 | 3 | 6 | 1 | 51 | 79303 | 79296 | 79465 | 80012 | 80432 | ... | 3.235576 | 0.822717 | 1.760531 | -1.507057 | 2.067820 | 3.674511 | 1.558176 | 2.306047 | -0.951175 | 2.757093 | |
| Escambia County | 50 | 3 | 6 | 1 | 53 | 38319 | 38319 | 38309 | 38213 | 38034 | ... | -3.449988 | -3.855889 | -4.822706 | -1.189831 | 1.190902 | -3.397716 | -3.803428 | -4.769999 | -1.136950 | 1.243830 | |
| Etowah County | 50 | 3 | 6 | 1 | 55 | 104430 | 104427 | 104442 | 104236 | 104235 | ... | -1.015919 | 2.062637 | -1.931884 | -1.726932 | -2.082234 | -0.632554 | 2.446383 | -1.518596 | -1.234901 | -1.588308 | |
| Fayette County | 50 | 3 | 6 | 1 | 57 | 17241 | 17241 | 17231 | 17062 | 16960 | ... | -5.015601 | -0.646640 | -3.725937 | 0.296745 | -2.797536 | -5.132243 | -0.705426 | -3.785079 | 0.237396 | -2.857058 | |
| Franklin County | 50 | 3 | 6 | 1 | 59 | 31704 | 31709 | 31734 | 31729 | 31648 | ... | -1.638750 | -5.459394 | -8.043702 | -1.267849 | -2.401719 | 0.063029 | -3.471291 | -5.700261 | 1.553115 | 0.442422 | |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| Wisconsin | Washburn County | 50 | 2 | 3 | 55 | 129 | 15911 | 15911 | 15930 | 15784 | 15831 | ... | -6.873936 | 7.338289 | -6.732724 | 3.510452 | -5.123279 | -6.747809 | 7.464811 | -6.605691 | 3.638104 | -4.995197 |
| Washington County | 50 | 2 | 3 | 55 | 131 | 131887 | 131885 | 131967 | 132225 | 132649 | ... | -0.794876 | 0.785279 | -2.215465 | 1.601149 | -0.434498 | -0.431504 | 1.162817 | -1.763330 | 2.104796 | 0.059931 | |
| Waukesha County | 50 | 2 | 3 | 55 | 133 | 389891 | 389938 | 390076 | 390808 | 392710 | ... | -0.765799 | 2.128860 | 0.038132 | 0.760109 | -0.719858 | 0.102448 | 3.180527 | 1.189727 | 2.077633 | 0.593567 | |
| Waupaca County | 50 | 2 | 3 | 55 | 135 | 52410 | 52410 | 52422 | 52342 | 52035 | ... | 3.111756 | -2.241873 | 6.292687 | -0.441031 | -0.480617 | 3.359933 | -2.011937 | 6.561277 | -0.134227 | -0.173022 | |
| Waushara County | 50 | 2 | 3 | 55 | 137 | 24496 | 24496 | 24506 | 24581 | 24484 | ... | 4.930022 | -2.404973 | -4.097017 | -4.906711 | -4.397793 | 5.174486 | -2.160399 | -3.810226 | -4.535615 | -4.024395 | |
| Winnebago County | 50 | 2 | 3 | 55 | 139 | 166994 | 166994 | 167059 | 167630 | 168717 | ... | 0.316712 | 2.889873 | 0.833819 | -2.406192 | -4.557985 | 0.842573 | 3.502335 | 1.531624 | -1.545153 | -3.685304 | |
| Wood County | 50 | 2 | 3 | 55 | 141 | 74749 | 74749 | 74807 | 74647 | 74384 | ... | -4.081523 | -5.019090 | -6.901200 | -5.596471 | -3.958322 | -3.733590 | -4.562809 | -6.442917 | -5.040889 | -3.414223 | |
| Wyoming | Albany County | 50 | 4 | 8 | 56 | 1 | 36299 | 36299 | 36428 | 36908 | 37396 | ... | 3.708956 | 2.637812 | -3.544634 | -3.334877 | -9.911169 | 6.736119 | 6.433032 | 0.719587 | 1.429233 | -5.166460 |
| Big Horn County | 50 | 4 | 8 | 56 | 3 | 11668 | 11668 | 11672 | 11745 | 11785 | ... | 4.868258 | 2.804930 | 16.815908 | -8.026420 | 5.095861 | 4.868258 | 3.144921 | 17.236306 | -7.608378 | 5.513554 | |
| Campbell County | 50 | 4 | 8 | 56 | 5 | 46133 | 46133 | 46244 | 46600 | 47881 | ... | -2.843479 | 15.601020 | -5.895711 | -8.550911 | 10.916963 | -2.649606 | 15.558684 | -5.916543 | -8.509402 | 10.978525 | |
| Carbon County | 50 | 4 | 8 | 56 | 7 | 15885 | 15885 | 15837 | 15817 | 15678 | ... | -7.581980 | -13.081441 | 3.178134 | -2.970641 | -23.300971 | -7.392431 | -12.636926 | 3.623073 | -2.338590 | -22.600668 | |
| Converse County | 50 | 4 | 8 | 56 | 9 | 13833 | 13833 | 13826 | 13728 | 14025 | ... | -12.847499 | 15.493820 | 19.035533 | -20.550587 | -0.070403 | -12.774915 | 16.502720 | 20.093063 | -19.358233 | 1.126443 | |
| Crook County | 50 | 4 | 8 | 56 | 11 | 7083 | 7083 | 7114 | 7129 | 7148 | ... | -1.544618 | -4.202564 | 1.397819 | 6.378258 | 18.629317 | -0.982939 | -3.642222 | 2.096729 | 7.071547 | 19.309219 | |
| Fremont County | 50 | 4 | 8 | 56 | 13 | 40123 | 40123 | 40222 | 40591 | 41129 | ... | 2.747083 | 7.782673 | -4.990688 | -12.331633 | -13.673610 | 3.093562 | 8.027411 | -4.747240 | -12.013555 | -13.352750 | |
| Goshen County | 50 | 4 | 8 | 56 | 15 | 13249 | 13247 | 13408 | 13597 | 13666 | ... | 14.293649 | 3.961413 | -8.079028 | -7.017803 | -11.899450 | 14.886132 | 4.841727 | -6.903896 | -5.761986 | -10.635133 | |
| Hot Springs County | 50 | 4 | 8 | 56 | 17 | 4812 | 4812 | 4813 | 4818 | 4846 | ... | 3.322604 | 6.208609 | 3.095336 | -6.017222 | -5.454164 | 5.191569 | 6.001656 | 2.888981 | -6.224712 | -5.663940 | |
| Johnson County | 50 | 4 | 8 | 56 | 19 | 8569 | 8569 | 8581 | 8636 | 8610 | ... | 4.995063 | -4.058912 | -0.812583 | -10.715742 | 0.933652 | 5.227392 | -4.058912 | -0.812583 | -10.715742 | 0.933652 | |
| Laramie County | 50 | 4 | 8 | 56 | 21 | 91738 | 91881 | 92271 | 92663 | 94894 | ... | -1.200428 | 15.547274 | 4.787847 | -1.226133 | 0.278940 | -0.973320 | 17.914554 | 6.003143 | -0.207819 | 1.673640 | |
| Lincoln County | 50 | 4 | 8 | 56 | 23 | 18106 | 18106 | 18091 | 18022 | 17943 | ... | -9.802564 | -11.566801 | 13.564556 | 6.125989 | 1.555544 | -9.691801 | -11.566801 | 13.619696 | 6.234414 | 1.662823 | |
| Natrona County | 50 | 4 | 8 | 56 | 25 | 75450 | 75450 | 75472 | 76420 | 78699 | ... | 7.189319 | 23.066162 | 24.322042 | -0.958472 | -0.061057 | 7.689674 | 23.749508 | 25.085233 | -0.110593 | 0.793743 | |
| Niobrara County | 50 | 4 | 8 | 56 | 27 | 2484 | 2484 | 2492 | 2485 | 2475 | ... | -0.401849 | 0.806452 | 29.066295 | -12.603387 | 7.492114 | -0.401849 | 0.806452 | 29.066295 | -12.603387 | 7.492114 | |
| Park County | 50 | 4 | 8 | 56 | 29 | 28205 | 28205 | 28259 | 28473 | 28863 | ... | 4.582951 | 8.057765 | 7.641997 | -9.252437 | -2.878980 | 6.486639 | 11.127389 | 10.877797 | -5.585731 | 0.856839 | |
| Platte County | 50 | 4 | 8 | 56 | 31 | 8667 | 8667 | 8678 | 8701 | 8732 | ... | 4.373094 | 5.392073 | 2.634593 | 6.055759 | 4.662270 | 4.373094 | 4.933173 | 2.176403 | 5.598720 | 4.207414 | |
| Sheridan County | 50 | 4 | 8 | 56 | 33 | 29116 | 29116 | 29146 | 29275 | 29594 | ... | 0.958559 | 8.425487 | 4.546373 | 3.678069 | -3.298406 | 2.122524 | 9.342778 | 5.523001 | 4.781489 | -2.198937 | |
| Sublette County | 50 | 4 | 8 | 56 | 35 | 10247 | 10247 | 10244 | 10142 | 10418 | ... | -23.741784 | 15.272374 | -40.870074 | -16.596273 | -22.870900 | -21.092907 | 16.828794 | -39.211861 | -14.409938 | -20.664059 | |
| Sweetwater County | 50 | 4 | 8 | 56 | 37 | 43806 | 43806 | 43593 | 44041 | 45104 | ... | 1.072643 | 16.243199 | -5.339774 | -14.252889 | -14.248864 | 1.255221 | 16.243199 | -5.295460 | -14.075283 | -14.070195 | |
| Teton County | 50 | 4 | 8 | 56 | 39 | 21294 | 21294 | 21297 | 21482 | 21697 | ... | -1.589565 | 0.972695 | 19.525929 | 14.143021 | -0.564849 | 0.654527 | 2.408578 | 21.160658 | 16.308671 | 1.520747 | |
| Uinta County | 50 | 4 | 8 | 56 | 41 | 21118 | 21118 | 21102 | 20912 | 20989 | ... | -17.755986 | -4.916350 | -6.902954 | -14.215862 | -12.127022 | -18.136812 | -5.536861 | -7.521840 | -14.740608 | -12.606351 | |
| Washakie County | 50 | 4 | 8 | 56 | 43 | 8533 | 8533 | 8545 | 8469 | 8443 | ... | -11.637475 | -0.827815 | -2.013502 | -17.781491 | 1.682288 | -11.990126 | -1.182592 | -2.250385 | -18.020168 | 1.441961 | |
| Weston County | 50 | 4 | 8 | 56 | 45 | 7208 | 7208 | 7181 | 7114 | 7065 | ... | -11.752361 | -8.040059 | 12.372583 | 1.533635 | 6.935294 | -12.032179 | -8.040059 | 12.372583 | 1.533635 | 6.935294 |
3142 rows × 98 columns
import numpy as np
def min_max(row):
data = row[['POPESTIMATE2010',
'POPESTIMATE2011',
'POPESTIMATE2012',
'POPESTIMATE2013',
'POPESTIMATE2014',
'POPESTIMATE2015']]
return pd.Series({'min': np.min(data), 'max': np.max(data)})
df.apply(min_max, axis=1)
| max | min | ||
|---|---|---|---|
| STNAME | CTYNAME | ||
| Alabama | Autauga County | 55347.0 | 54660.0 |
| Baldwin County | 203709.0 | 183193.0 | |
| Barbour County | 27341.0 | 26489.0 | |
| Bibb County | 22861.0 | 22512.0 | |
| Blount County | 57776.0 | 57373.0 | |
| Bullock County | 10887.0 | 10606.0 | |
| Butler County | 20944.0 | 20154.0 | |
| Calhoun County | 118437.0 | 115620.0 | |
| Chambers County | 34153.0 | 33993.0 | |
| Cherokee County | 26084.0 | 25859.0 | |
| Chilton County | 43943.0 | 43665.0 | |
| Choctaw County | 13841.0 | 13170.0 | |
| Clarke County | 25767.0 | 24675.0 | |
| Clay County | 13880.0 | 13456.0 | |
| Cleburne County | 15072.0 | 14921.0 | |
| Coffee County | 51211.0 | 50177.0 | |
| Colbert County | 54514.0 | 54354.0 | |
| Conecuh County | 13208.0 | 12662.0 | |
| Coosa County | 11758.0 | 10724.0 | |
| Covington County | 38060.0 | 37796.0 | |
| Crenshaw County | 13963.0 | 13853.0 | |
| Cullman County | 82005.0 | 80374.0 | |
| Dale County | 50358.0 | 49501.0 | |
| Dallas County | 43803.0 | 41131.0 | |
| DeKalb County | 71387.0 | 70869.0 | |
| Elmore County | 81468.0 | 79465.0 | |
| Escambia County | 38309.0 | 37784.0 | |
| Etowah County | 104442.0 | 103057.0 | |
| Fayette County | 17231.0 | 16759.0 | |
| Franklin County | 31734.0 | 31507.0 | |
| ... | ... | ... | ... |
| Wisconsin | Washburn County | 15930.0 | 15552.0 |
| Washington County | 133674.0 | 131967.0 | |
| Waukesha County | 396488.0 | 390076.0 | |
| Waupaca County | 52422.0 | 51945.0 | |
| Waushara County | 24581.0 | 24033.0 | |
| Winnebago County | 169639.0 | 167059.0 | |
| Wood County | 74807.0 | 73435.0 | |
| Wyoming | Albany County | 37956.0 | 36428.0 |
| Big Horn County | 12022.0 | 11672.0 | |
| Campbell County | 49220.0 | 46244.0 | |
| Carbon County | 15856.0 | 15559.0 | |
| Converse County | 14343.0 | 13728.0 | |
| Crook County | 7444.0 | 7114.0 | |
| Fremont County | 41129.0 | 40222.0 | |
| Goshen County | 13666.0 | 13383.0 | |
| Hot Springs County | 4846.0 | 4741.0 | |
| Johnson County | 8636.0 | 8552.0 | |
| Laramie County | 97121.0 | 92271.0 | |
| Lincoln County | 18722.0 | 17943.0 | |
| Natrona County | 82178.0 | 75472.0 | |
| Niobrara County | 2548.0 | 2475.0 | |
| Park County | 29237.0 | 28259.0 | |
| Platte County | 8812.0 | 8678.0 | |
| Sheridan County | 30020.0 | 29146.0 | |
| Sublette County | 10418.0 | 9899.0 | |
| Sweetwater County | 45162.0 | 43593.0 | |
| Teton County | 23125.0 | 21297.0 | |
| Uinta County | 21102.0 | 20822.0 | |
| Washakie County | 8545.0 | 8316.0 | |
| Weston County | 7234.0 | 7065.0 |
3142 rows × 2 columns
import numpy as np
def min_max(row):
data = row[['POPESTIMATE2010',
'POPESTIMATE2011',
'POPESTIMATE2012',
'POPESTIMATE2013',
'POPESTIMATE2014',
'POPESTIMATE2015']]
row['max'] = np.max(data)
row['min'] = np.min(data)
return row
df.apply(min_max, axis=1)
| SUMLEV | REGION | DIVISION | STATE | COUNTY | STNAME | CTYNAME | CENSUS2010POP | ESTIMATESBASE2010 | POPESTIMATE2010 | ... | RDOMESTICMIG2013 | RDOMESTICMIG2014 | RDOMESTICMIG2015 | RNETMIG2011 | RNETMIG2012 | RNETMIG2013 | RNETMIG2014 | RNETMIG2015 | max | min | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 40 | 3 | 6 | 1 | 0 | Alabama | Alabama | 4779736 | 4780127 | 4785161 | ... | 0.381066 | 0.582002 | -0.467369 | 1.030015 | 0.826644 | 1.383282 | 1.724718 | 0.712594 | 4858979 | 4785161 |
| 1 | 50 | 3 | 6 | 1 | 1 | Alabama | Autauga County | 54571 | 54571 | 54660 | ... | -3.012349 | 2.265971 | -2.530799 | 7.606016 | -2.626146 | -2.722002 | 2.592270 | -2.187333 | 55347 | 54660 |
| 2 | 50 | 3 | 6 | 1 | 3 | Alabama | Baldwin County | 182265 | 182265 | 183193 | ... | 21.845705 | 19.243287 | 17.197872 | 15.844176 | 18.559627 | 22.727626 | 20.317142 | 18.293499 | 203709 | 183193 |
| 3 | 50 | 3 | 6 | 1 | 5 | Alabama | Barbour County | 27457 | 27457 | 27341 | ... | -7.056824 | -3.904217 | -10.543299 | -4.874741 | -2.758113 | -7.167664 | -3.978583 | -10.543299 | 27341 | 26489 |
| 4 | 50 | 3 | 6 | 1 | 7 | Alabama | Bibb County | 22915 | 22919 | 22861 | ... | -6.201001 | -0.177537 | 0.177258 | -5.088389 | -4.363636 | -5.403729 | 0.754533 | 1.107861 | 22861 | 22512 |
| 5 | 50 | 3 | 6 | 1 | 9 | Alabama | Blount County | 57322 | 57322 | 57373 | ... | -1.748766 | -2.062535 | -1.369970 | 1.859511 | -0.848580 | -1.402476 | -1.577232 | -0.884411 | 57776 | 57373 |
| 6 | 50 | 3 | 6 | 1 | 11 | Alabama | Bullock County | 10914 | 10915 | 10887 | ... | -1.130263 | 14.354290 | -16.167247 | -29.001673 | -2.825524 | 1.507017 | 17.243790 | -13.193961 | 10887 | 10606 |
| 7 | 50 | 3 | 6 | 1 | 13 | Alabama | Butler County | 20947 | 20946 | 20944 | ... | -5.655413 | 1.085428 | -6.529805 | -13.936612 | -11.586865 | -5.557058 | 1.184103 | -6.430868 | 20944 | 20154 |
| 8 | 50 | 3 | 6 | 1 | 15 | Alabama | Calhoun County | 118572 | 118586 | 118437 | ... | -5.524649 | -4.463211 | -3.376322 | -5.791579 | -4.092677 | -5.062836 | -3.912834 | -2.806406 | 118437 | 115620 |
| 9 | 50 | 3 | 6 | 1 | 17 | Alabama | Chambers County | 34215 | 34170 | 34098 | ... | 2.872721 | -2.287222 | 1.349468 | -1.821092 | 4.701181 | 3.781439 | -1.290228 | 2.346901 | 34153 | 33993 |
| 10 | 50 | 3 | 6 | 1 | 19 | Alabama | Cherokee County | 25989 | 25986 | 25976 | ... | 5.488706 | -0.076806 | -3.239866 | 6.416167 | 1.420264 | 5.757384 | 0.230419 | -2.931307 | 26084 | 25859 |
| 11 | 50 | 3 | 6 | 1 | 21 | Alabama | Chilton County | 43643 | 43631 | 43665 | ... | 0.480044 | 0.456017 | -2.253483 | -0.823761 | -2.447504 | 0.868651 | 0.957636 | -1.752709 | 43943 | 43665 |
| 12 | 50 | 3 | 6 | 1 | 23 | Alabama | Choctaw County | 13859 | 13858 | 13841 | ... | -8.766391 | -1.274984 | -5.291205 | -15.528177 | -0.737028 | -8.766391 | -1.274984 | -5.291205 | 13841 | 13170 |
| 13 | 50 | 3 | 6 | 1 | 25 | Alabama | Clarke County | 25833 | 25840 | 25767 | ... | -0.318345 | -8.686428 | -5.613667 | -6.077488 | -17.509958 | -0.159172 | -8.486280 | -5.411736 | 25767 | 24675 |
| 14 | 50 | 3 | 6 | 1 | 27 | Alabama | Clay County | 13932 | 13932 | 13880 | ... | 4.902871 | 5.702648 | 3.912450 | -10.816697 | -13.345130 | 4.977157 | 5.776708 | 3.986270 | 13880 | 13456 |
| 15 | 50 | 3 | 6 | 1 | 29 | Alabama | Cleburne County | 14972 | 14972 | 14973 | ... | 7.345821 | 3.654485 | -3.123961 | -3.673524 | -5.151880 | 7.345821 | 3.654485 | -3.123961 | 15072 | 14921 |
| 16 | 50 | 3 | 6 | 1 | 31 | Alabama | Coffee County | 49948 | 49948 | 50177 | ... | -13.146535 | -3.602859 | 2.214774 | 2.166460 | 11.513368 | -10.438741 | -0.767822 | 5.350738 | 51211 | 50177 |
| 17 | 50 | 3 | 6 | 1 | 33 | Alabama | Colbert County | 54428 | 54428 | 54514 | ... | 1.762390 | 1.835688 | -0.110260 | 0.513964 | 1.469035 | 2.276420 | 2.533249 | 0.588052 | 54514 | 54354 |
| 18 | 50 | 3 | 6 | 1 | 35 | Alabama | Conecuh County | 13228 | 13228 | 13208 | ... | -6.107224 | -14.645416 | 2.684140 | -4.861559 | -7.504690 | -6.107224 | -14.645416 | 2.684140 | 13208 | 12662 |
| 19 | 50 | 3 | 6 | 1 | 37 | Alabama | Coosa County | 11539 | 11758 | 11758 | ... | -4.313831 | -22.958017 | -5.387581 | -34.017138 | -10.380162 | -4.403703 | -23.049483 | -5.387581 | 11758 | 10724 |
| 20 | 50 | 3 | 6 | 1 | 39 | Alabama | Covington County | 37765 | 37765 | 37796 | ... | 0.740271 | 3.697932 | -0.316945 | 6.881460 | -4.559952 | 0.793147 | 3.750759 | -0.264121 | 38060 | 37796 |
| 21 | 50 | 3 | 6 | 1 | 41 | Alabama | Crenshaw County | 13906 | 13906 | 13853 | ... | -1.864936 | 3.084648 | 3.439504 | 2.666763 | 5.099293 | -0.502098 | 4.734577 | 5.087600 | 13963 | 13853 |
| 22 | 50 | 3 | 6 | 1 | 43 | Alabama | Cullman County | 80406 | 80410 | 80473 | ... | 4.071247 | 5.087142 | 7.915406 | -1.031427 | -0.634159 | 4.542916 | 5.593387 | 8.417777 | 82005 | 80374 |
| 23 | 50 | 3 | 6 | 1 | 45 | Alabama | Dale County | 50251 | 50251 | 50358 | ... | -15.236079 | -11.979785 | -5.107706 | -9.575283 | -0.776637 | -12.640155 | -9.503292 | -1.998668 | 50358 | 49501 |
| 24 | 50 | 3 | 6 | 1 | 47 | Alabama | Dallas County | 43820 | 43820 | 43803 | ... | -16.745678 | -9.344789 | -14.687232 | -15.727573 | -11.378047 | -16.792849 | -9.368689 | -14.711389 | 43803 | 41131 |
| 25 | 50 | 3 | 6 | 1 | 49 | Alabama | DeKalb County | 71109 | 71115 | 71142 | ... | -1.748807 | 0.267830 | 0.028141 | 1.375159 | -8.656001 | -1.029539 | 1.198187 | 0.956790 | 71387 | 70869 |
| 26 | 50 | 3 | 6 | 1 | 51 | Alabama | Elmore County | 79303 | 79296 | 79465 | ... | 1.760531 | -1.507057 | 2.067820 | 3.674511 | 1.558176 | 2.306047 | -0.951175 | 2.757093 | 81468 | 79465 |
| 27 | 50 | 3 | 6 | 1 | 53 | Alabama | Escambia County | 38319 | 38319 | 38309 | ... | -4.822706 | -1.189831 | 1.190902 | -3.397716 | -3.803428 | -4.769999 | -1.136950 | 1.243830 | 38309 | 37784 |
| 28 | 50 | 3 | 6 | 1 | 55 | Alabama | Etowah County | 104430 | 104427 | 104442 | ... | -1.931884 | -1.726932 | -2.082234 | -0.632554 | 2.446383 | -1.518596 | -1.234901 | -1.588308 | 104442 | 103057 |
| 29 | 50 | 3 | 6 | 1 | 57 | Alabama | Fayette County | 17241 | 17241 | 17231 | ... | -3.725937 | 0.296745 | -2.797536 | -5.132243 | -0.705426 | -3.785079 | 0.237396 | -2.857058 | 17231 | 16759 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 3163 | 50 | 2 | 3 | 55 | 131 | Wisconsin | Washington County | 131887 | 131885 | 131967 | ... | -2.215465 | 1.601149 | -0.434498 | -0.431504 | 1.162817 | -1.763330 | 2.104796 | 0.059931 | 133674 | 131967 |
| 3164 | 50 | 2 | 3 | 55 | 133 | Wisconsin | Waukesha County | 389891 | 389938 | 390076 | ... | 0.038132 | 0.760109 | -0.719858 | 0.102448 | 3.180527 | 1.189727 | 2.077633 | 0.593567 | 396488 | 390076 |
| 3165 | 50 | 2 | 3 | 55 | 135 | Wisconsin | Waupaca County | 52410 | 52410 | 52422 | ... | 6.292687 | -0.441031 | -0.480617 | 3.359933 | -2.011937 | 6.561277 | -0.134227 | -0.173022 | 52422 | 51945 |
| 3166 | 50 | 2 | 3 | 55 | 137 | Wisconsin | Waushara County | 24496 | 24496 | 24506 | ... | -4.097017 | -4.906711 | -4.397793 | 5.174486 | -2.160399 | -3.810226 | -4.535615 | -4.024395 | 24581 | 24033 |
| 3167 | 50 | 2 | 3 | 55 | 139 | Wisconsin | Winnebago County | 166994 | 166994 | 167059 | ... | 0.833819 | -2.406192 | -4.557985 | 0.842573 | 3.502335 | 1.531624 | -1.545153 | -3.685304 | 169639 | 167059 |
| 3168 | 50 | 2 | 3 | 55 | 141 | Wisconsin | Wood County | 74749 | 74749 | 74807 | ... | -6.901200 | -5.596471 | -3.958322 | -3.733590 | -4.562809 | -6.442917 | -5.040889 | -3.414223 | 74807 | 73435 |
| 3169 | 40 | 4 | 8 | 56 | 0 | Wyoming | Wyoming | 563626 | 563767 | 564516 | ... | 4.487115 | -4.788275 | -3.221091 | 0.289680 | 10.694870 | 5.440390 | -3.727831 | -2.091573 | 586107 | 564516 |
| 3170 | 50 | 4 | 8 | 56 | 1 | Wyoming | Albany County | 36299 | 36299 | 36428 | ... | -3.544634 | -3.334877 | -9.911169 | 6.736119 | 6.433032 | 0.719587 | 1.429233 | -5.166460 | 37956 | 36428 |
| 3171 | 50 | 4 | 8 | 56 | 3 | Wyoming | Big Horn County | 11668 | 11668 | 11672 | ... | 16.815908 | -8.026420 | 5.095861 | 4.868258 | 3.144921 | 17.236306 | -7.608378 | 5.513554 | 12022 | 11672 |
| 3172 | 50 | 4 | 8 | 56 | 5 | Wyoming | Campbell County | 46133 | 46133 | 46244 | ... | -5.895711 | -8.550911 | 10.916963 | -2.649606 | 15.558684 | -5.916543 | -8.509402 | 10.978525 | 49220 | 46244 |
| 3173 | 50 | 4 | 8 | 56 | 7 | Wyoming | Carbon County | 15885 | 15885 | 15837 | ... | 3.178134 | -2.970641 | -23.300971 | -7.392431 | -12.636926 | 3.623073 | -2.338590 | -22.600668 | 15856 | 15559 |
| 3174 | 50 | 4 | 8 | 56 | 9 | Wyoming | Converse County | 13833 | 13833 | 13826 | ... | 19.035533 | -20.550587 | -0.070403 | -12.774915 | 16.502720 | 20.093063 | -19.358233 | 1.126443 | 14343 | 13728 |
| 3175 | 50 | 4 | 8 | 56 | 11 | Wyoming | Crook County | 7083 | 7083 | 7114 | ... | 1.397819 | 6.378258 | 18.629317 | -0.982939 | -3.642222 | 2.096729 | 7.071547 | 19.309219 | 7444 | 7114 |
| 3176 | 50 | 4 | 8 | 56 | 13 | Wyoming | Fremont County | 40123 | 40123 | 40222 | ... | -4.990688 | -12.331633 | -13.673610 | 3.093562 | 8.027411 | -4.747240 | -12.013555 | -13.352750 | 41129 | 40222 |
| 3177 | 50 | 4 | 8 | 56 | 15 | Wyoming | Goshen County | 13249 | 13247 | 13408 | ... | -8.079028 | -7.017803 | -11.899450 | 14.886132 | 4.841727 | -6.903896 | -5.761986 | -10.635133 | 13666 | 13383 |
| 3178 | 50 | 4 | 8 | 56 | 17 | Wyoming | Hot Springs County | 4812 | 4812 | 4813 | ... | 3.095336 | -6.017222 | -5.454164 | 5.191569 | 6.001656 | 2.888981 | -6.224712 | -5.663940 | 4846 | 4741 |
| 3179 | 50 | 4 | 8 | 56 | 19 | Wyoming | Johnson County | 8569 | 8569 | 8581 | ... | -0.812583 | -10.715742 | 0.933652 | 5.227392 | -4.058912 | -0.812583 | -10.715742 | 0.933652 | 8636 | 8552 |
| 3180 | 50 | 4 | 8 | 56 | 21 | Wyoming | Laramie County | 91738 | 91881 | 92271 | ... | 4.787847 | -1.226133 | 0.278940 | -0.973320 | 17.914554 | 6.003143 | -0.207819 | 1.673640 | 97121 | 92271 |
| 3181 | 50 | 4 | 8 | 56 | 23 | Wyoming | Lincoln County | 18106 | 18106 | 18091 | ... | 13.564556 | 6.125989 | 1.555544 | -9.691801 | -11.566801 | 13.619696 | 6.234414 | 1.662823 | 18722 | 17943 |
| 3182 | 50 | 4 | 8 | 56 | 25 | Wyoming | Natrona County | 75450 | 75450 | 75472 | ... | 24.322042 | -0.958472 | -0.061057 | 7.689674 | 23.749508 | 25.085233 | -0.110593 | 0.793743 | 82178 | 75472 |
| 3183 | 50 | 4 | 8 | 56 | 27 | Wyoming | Niobrara County | 2484 | 2484 | 2492 | ... | 29.066295 | -12.603387 | 7.492114 | -0.401849 | 0.806452 | 29.066295 | -12.603387 | 7.492114 | 2548 | 2475 |
| 3184 | 50 | 4 | 8 | 56 | 29 | Wyoming | Park County | 28205 | 28205 | 28259 | ... | 7.641997 | -9.252437 | -2.878980 | 6.486639 | 11.127389 | 10.877797 | -5.585731 | 0.856839 | 29237 | 28259 |
| 3185 | 50 | 4 | 8 | 56 | 31 | Wyoming | Platte County | 8667 | 8667 | 8678 | ... | 2.634593 | 6.055759 | 4.662270 | 4.373094 | 4.933173 | 2.176403 | 5.598720 | 4.207414 | 8812 | 8678 |
| 3186 | 50 | 4 | 8 | 56 | 33 | Wyoming | Sheridan County | 29116 | 29116 | 29146 | ... | 4.546373 | 3.678069 | -3.298406 | 2.122524 | 9.342778 | 5.523001 | 4.781489 | -2.198937 | 30020 | 29146 |
| 3187 | 50 | 4 | 8 | 56 | 35 | Wyoming | Sublette County | 10247 | 10247 | 10244 | ... | -40.870074 | -16.596273 | -22.870900 | -21.092907 | 16.828794 | -39.211861 | -14.409938 | -20.664059 | 10418 | 9899 |
| 3188 | 50 | 4 | 8 | 56 | 37 | Wyoming | Sweetwater County | 43806 | 43806 | 43593 | ... | -5.339774 | -14.252889 | -14.248864 | 1.255221 | 16.243199 | -5.295460 | -14.075283 | -14.070195 | 45162 | 43593 |
| 3189 | 50 | 4 | 8 | 56 | 39 | Wyoming | Teton County | 21294 | 21294 | 21297 | ... | 19.525929 | 14.143021 | -0.564849 | 0.654527 | 2.408578 | 21.160658 | 16.308671 | 1.520747 | 23125 | 21297 |
| 3190 | 50 | 4 | 8 | 56 | 41 | Wyoming | Uinta County | 21118 | 21118 | 21102 | ... | -6.902954 | -14.215862 | -12.127022 | -18.136812 | -5.536861 | -7.521840 | -14.740608 | -12.606351 | 21102 | 20822 |
| 3191 | 50 | 4 | 8 | 56 | 43 | Wyoming | Washakie County | 8533 | 8533 | 8545 | ... | -2.013502 | -17.781491 | 1.682288 | -11.990126 | -1.182592 | -2.250385 | -18.020168 | 1.441961 | 8545 | 8316 |
| 3192 | 50 | 4 | 8 | 56 | 45 | Wyoming | Weston County | 7208 | 7208 | 7181 | ... | 12.372583 | 1.533635 | 6.935294 | -12.032179 | -8.040059 | 12.372583 | 1.533635 | 6.935294 | 7234 | 7065 |
3193 rows × 102 columns
rows = ['POPESTIMATE2010',
'POPESTIMATE2011',
'POPESTIMATE2012',
'POPESTIMATE2013',
'POPESTIMATE2014',
'POPESTIMATE2015']
df.apply(lambda x: np.max(x[rows]), axis=1)
0 4858979
1 55347
2 203709
3 27341
4 22861
5 57776
6 10887
7 20944
8 118437
9 34153
10 26084
11 43943
12 13841
13 25767
14 13880
15 15072
16 51211
17 54514
18 13208
19 11758
20 38060
21 13963
22 82005
23 50358
24 43803
25 71387
26 81468
27 38309
28 104442
29 17231
...
3163 133674
3164 396488
3165 52422
3166 24581
3167 169639
3168 74807
3169 586107
3170 37956
3171 12022
3172 49220
3173 15856
3174 14343
3175 7444
3176 41129
3177 13666
3178 4846
3179 8636
3180 97121
3181 18722
3182 82178
3183 2548
3184 29237
3185 8812
3186 30020
3187 10418
3188 45162
3189 23125
3190 21102
3191 8545
3192 7234
Length: 3193, dtype: int64
import pandas as pd
import numpy as np
df = pd.read_csv('census.csv')
df = df[df['SUMLEV']==50]
df
%%timeit -n 10
for state in df['STNAME'].unique():
avg = np.average(df.where(df['STNAME']==state).dropna()['CENSUS2010POP'])
print('Counties in state ' + state + ' have an average population of ' + str(avg))
%%timeit -n 10
for group, frame in df.groupby('STNAME'):
avg = np.average(frame['CENSUS2010POP'])
print('Counties in state ' + group + ' have an average population of ' + str(avg))
df.head()
df = df.set_index('STNAME')
def fun(item):
if item[0]<'M':
return 0
if item[0]<'Q':
return 1
return 2
for group, frame in df.groupby(fun):
print('There are ' + str(len(frame)) + ' records in group ' + str(group) + ' for processing.')
df = pd.read_csv('census.csv')
df = df[df['SUMLEV']==50]
df.groupby('STNAME').agg({'CENSUS2010POP': np.average})
print(type(df.groupby(level=0)['POPESTIMATE2010','POPESTIMATE2011']))
print(type(df.groupby(level=0)['POPESTIMATE2010']))
(df.set_index('STNAME').groupby(level=0)['CENSUS2010POP']
.agg({'avg': np.average, 'sum': np.sum}))
(df.set_index('STNAME').groupby(level=0)['POPESTIMATE2010','POPESTIMATE2011']
.agg({'avg': np.average, 'sum': np.sum}))
(df.set_index('STNAME').groupby(level=0)['POPESTIMATE2010','POPESTIMATE2011']
.agg({'POPESTIMATE2010': np.average, 'POPESTIMATE2011': np.sum}))
df = pd.DataFrame(['A+', 'A', 'A-', 'B+', 'B', 'B-', 'C+', 'C', 'C-', 'D+', 'D'],
index=['excellent', 'excellent', 'excellent', 'good', 'good', 'good', 'ok', 'ok', 'ok', 'poor', 'poor'])
df.rename(columns={0: 'Grades'}, inplace=True)
df
df['Grades'].astype('category').head()
grades = df['Grades'].astype('category',
categories=['D', 'D+', 'C-', 'C', 'C+', 'B-', 'B', 'B+', 'A-', 'A', 'A+'],
ordered=True)
grades.head()
grades > 'C'
df = pd.read_csv('census.csv')
df = df[df['SUMLEV']==50]
df = df.set_index('STNAME').groupby(level=0)['CENSUS2010POP'].agg({'avg': np.average})
pd.cut(df['avg'],10)
#http://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64
df = pd.read_csv('cars.csv')
df.head()
df.pivot_table(values='(kW)', index='YEAR', columns='Make', aggfunc=np.mean)
df.pivot_table(values='(kW)', index='YEAR', columns='Make', aggfunc=[np.mean,np.min], margins=True)
import pandas as pd
import numpy as np
pd.Timestamp('9/1/2016 10:05AM')
Timestamp('2016-09-01 10:05:00')
pd.Period('1/2016')
Period('2016-01', 'M')
pd.Period('3/5/2016')
Period('2016-03-05', 'D')
t1 = pd.Series(list('abc'), [pd.Timestamp('2016-09-01'), pd.Timestamp('2016-09-02'), pd.Timestamp('2016-09-03')])
t1
2016-09-01 a 2016-09-02 b 2016-09-03 c dtype: object
type(t1.index)
pandas.tseries.index.DatetimeIndex
t2 = pd.Series(list('def'), [pd.Period('2016-09'), pd.Period('2016-10'), pd.Period('2016-11')])
t2
2016-09 d 2016-10 e 2016-11 f Freq: M, dtype: object
type(t2.index)
pandas.tseries.period.PeriodIndex
d1 = ['2 June 2013', 'Aug 29, 2014', '2015-06-26', '7/12/16']
ts3 = pd.DataFrame(np.random.randint(10, 100, (4,2)), index=d1, columns=list('ab'))
ts3
| a | b | |
|---|---|---|
| 2 June 2013 | 16 | 46 |
| Aug 29, 2014 | 14 | 66 |
| 2015-06-26 | 59 | 99 |
| 7/12/16 | 27 | 17 |
ts3.index = pd.to_datetime(ts3.index)
ts3
| a | b | |
|---|---|---|
| 2013-06-02 | 16 | 46 |
| 2014-08-29 | 14 | 66 |
| 2015-06-26 | 59 | 99 |
| 2016-07-12 | 27 | 17 |
pd.to_datetime('4.7.12', dayfirst=True)
Timestamp('2012-07-04 00:00:00')
pd.Timestamp('9/3/2016')-pd.Timestamp('9/1/2016')
Timedelta('2 days 00:00:00')
pd.Timestamp('9/2/2016 8:10AM') + pd.Timedelta('12D 3H')
Timestamp('2016-09-14 11:10:00')
dates = pd.date_range('10-01-2016', periods=9, freq='2W-SUN')
dates
DatetimeIndex(['2016-10-02', '2016-10-16', '2016-10-30', '2016-11-13',
'2016-11-27', '2016-12-11', '2016-12-25', '2017-01-08',
'2017-01-22'],
dtype='datetime64[ns]', freq='2W-SUN')
df = pd.DataFrame({'Count 1': 100 + np.random.randint(-5, 10, 9).cumsum(),
'Count 2': 120 + np.random.randint(-5, 10, 9)}, index=dates)
df
| Count 1 | Count 2 | |
|---|---|---|
| 2016-10-02 | 104 | 125 |
| 2016-10-16 | 109 | 122 |
| 2016-10-30 | 111 | 127 |
| 2016-11-13 | 117 | 126 |
| 2016-11-27 | 114 | 126 |
| 2016-12-11 | 109 | 121 |
| 2016-12-25 | 105 | 126 |
| 2017-01-08 | 105 | 125 |
| 2017-01-22 | 101 | 123 |
df.index.weekday_name
array(['Sunday', 'Sunday', 'Sunday', 'Sunday', 'Sunday', 'Sunday',
'Sunday', 'Sunday', 'Sunday'], dtype=object)
df.diff()
| Count 1 | Count 2 | |
|---|---|---|
| 2016-10-02 | NaN | NaN |
| 2016-10-16 | 5.0 | -3.0 |
| 2016-10-30 | 2.0 | 5.0 |
| 2016-11-13 | 6.0 | -1.0 |
| 2016-11-27 | -3.0 | 0.0 |
| 2016-12-11 | -5.0 | -5.0 |
| 2016-12-25 | -4.0 | 5.0 |
| 2017-01-08 | 0.0 | -1.0 |
| 2017-01-22 | -4.0 | -2.0 |
df.resample('M').mean()
| Count 1 | Count 2 | |
|---|---|---|
| 2016-10-31 | 108.0 | 124.666667 |
| 2016-11-30 | 115.5 | 126.000000 |
| 2016-12-31 | 107.0 | 123.500000 |
| 2017-01-31 | 103.0 | 124.000000 |
df['2017']
| Count 1 | Count 2 | |
|---|---|---|
| 2017-01-08 | 105 | 125 |
| 2017-01-22 | 101 | 123 |
df['2016-12']
| Count 1 | Count 2 | |
|---|---|---|
| 2016-12-11 | 109 | 121 |
| 2016-12-25 | 105 | 126 |
df['2016-12':]
| Count 1 | Count 2 | |
|---|---|---|
| 2016-12-11 | 109 | 121 |
| 2016-12-25 | 105 | 126 |
| 2017-01-08 | 105 | 125 |
| 2017-01-22 | 101 | 123 |
df.asfreq('W', method='ffill')
import matplotlib.pyplot as plt
%matplotlib inline
df.plot()